

ACOP Reliability and Safety

Presenter: Paul Nemeth

Credits: DL

RELIABILITY

- ACOP Reliability effort focuses on assuring mission success and eliminating any potential single failure points that can affect safety.
- Reliability assessment served as a foundation for subsequent Safety Analysis

FMECA and SPF List (1)

- Failure Modes, Effects and Criticality Analysis is performed to:
 - √ Identify possible failure modes and their effects
 - ✓ Determine severity of each failure effect
 - ✓ Identify and possibly remove or control SPF (identified SPF are listed with rationale to accept them)

FMECA and SPF List (2)

FMECA guidelines:

- ✓ FMECA is performed following GPQ-010-PSA-102 (Reliability and Maintainability for ESA Microgravity Facilities)
- ✓ Reliability Categories defined according to GPQ-010-PSA-102 and NASA NSTS 1700.7B for safety categories

FMECA - Reliability Categories

Cat.1a: Catastrophic (safety categories NSTS 1700.7B ISS Addendum)	 Hazard which can result in the potential for: a disabling or fatal personnel injury loss of the Orbiter/ISS, ground facilities or STS/ISS equipment
Cat.1b: Critical (safety categories NSTS 1700.7B ISS Addendum)	 Hazard which can result in: damage to STS/ISS a non-disabling personnel injury the use of unscheduled safing procedures that affect operations of the Orbiter/ISS or another payload
Cat. 2: Major (GPQ-010-PSA-102)	The failure propagates across the interface and/or the facility cannot operate anymore.
Cat. 3: Significant (GPQ-010-PSA-102)	The facility is partly operable (minor impact on the mission) or needs corrective on-orbit maintenance.

FMECA - Functional Blocks

ACOP System identified functional blocks:

- ACOP-SBC
- ACOP-T101
- ACOP-T102
- ACOP-T103
- Mechanical Parts

- ACOP-PS
- ACOP-BP
- HARD DRIVE
- Front Panel

FMECA - Results (1)

- Most identified failure modes are Severity Category 3 (On-orbit Maintainable Items)
 - → minor impact on the mission
- Failures with Severity Category 1a/1b (3 cases identified):

Item / Block

- ✓ ACOP hard drive
- ✓ LCD (TBC)
- ✓ Mechanical parts

Assumed Failure Mode

High rotational speed

Rupture

Rupture

→ Safety Hazard Analysis has been performed according to NSTS1700.7B (Standardized Hazard Report STD-ACP-HR-001 and Unique Hazard Report ACP-HR-002)

FMECA - Results (2)

 Failures with Severity Category 2 (5 cases identified) are Single Point Failures:

Item / Block Assumed Failure Mode

✓ ACOP Backplane Loss of function

Front panel:

✓ HRDL Connector Loss of function

✓ Power Connector Loss of function

✓ MRDL Connector Loss of function

✓ Circuit Breaker (switch) Loss of function

→ Deeper level analysis will be performed when the detailed design will be available

SAFETY

- Safety Analyses strive to minimize the potential for the ACOP to affect/damage the AMS-02, ISS, Crew and other payloads.
- Established that the ACOP operations can not directly influence the safety of the AMS-02 in a new unique manner.

Safety – ACOP FSDP

- ACOP Flight Safety Data Package for Phase 0/I Safety Review according to:
 - ✓ Programmatic Requirements of NSTS 13830, Rev. C
 - ✓ Technical Requirements of NSTS 1700.7B, ISS Addendum and NSTS 18798B

Safety - Analysis

- Safety subsystems:
 - Structures
 - Electrical
- Hazard categories:
 - Rupture / Collision
 - Injury / Illness
 - Electrical shock
 - Off-gassing / Toxicity

- Materials
- Human factors

- Fire
- Temperature extremes
- Radiation

Safety - Hazard Reports

- a) ACOP Flight Payload Standardized Hazard Report STD-ACP-HR-001 (JSC Form 1230)
- b) ACOP Unique Hazard Reports (JSC Form 542B):
 - ✓ ACP-HR-002 Structure Failure
 - ✓ ACP-HR-003 IVA Electrical Shock

Standardized Hazard Report (1)

Following standard hazards with relevant controls are identified:

- Sharp Edges: design according to NSTS 07700 Vol. XIV App. 9 (IVA hardware) / SSP 57000
- Shatterable Materials: LCD (TBC) protection plastic covering (LEXAN)
- Flammable Materials: A-rated selected from MAPTIS
- Material Off-gassing: Materials selected from MAPTIS with acceptable off-gassing characteristics
- Non Ionizing Radiation Non-Transmitters: SSP 30238 EMI compatibility testing

Standardized Hazard Report (2)

- Touch Temperature: design according to requirements of NSTS 18798B Letter MA2-95-048 (limits of -18°C to +49°C)
- Electrical Power Distribution: design according to protection requirements of NSTS 18798B Letter TA-92-038
- Rotating Equipment: Hard drives are contained within hard disk case and within the metallic box of ACOP. Rotating Energy: TBD
- Mating / De-mating of Power Connectors: design according to low power criteria of NSTS 18798B letter MA2-99-170

ACP-HR-002 Structure Failure (1)

- Materials selected from MSFC-HDBK-527 / JSC-09604 / MAPTIS database to meet requirements of MFSC-SPEC-522B for stress corrosion
- Fracture control plan procedures in accordance with NASA-STD-5003
- Structure (metallic) is verified by analysis using factors of 1.25 for yield and 2.0 for ultimate conditions

ACP-HR-002 Structure Failure (2)

<u>Critical issue</u>: The Margin of Safety of the EXPRESS Rack attachment receptacles is negative (-0.183).

→ Possible actions to meet required positive Margin of Safety:

Possible Solutions:

- 1. Change the Attachment Receptacle type (increase the allowable forces)
- 2. Reduce the mass of ACOP
- 3. Move the CoG of ACOP towards the backplate to reduce the forces on the Attachment Receptacles due to bending

ACP-HR-003 Electrical Shock

High voltage source (> 32V): DC/AC inverter installed inside ACOP to provide power for backlight of LCD display (TBC)

Hazard Controls:

- ✓ ACOP must be switched-off when the front panel is opened (no power to the DC/AC inverter)
- ✓ The inverter is not accessible even when the front panel is open, since it is inside a metallic box
- ✓ Bonding and grounding as per SSP-52000-IDD-ERP and Interpretation Letter MA2-99-14

Other Safety Issues

Fire Protection:

- ✓ Approved materials, proper wire sizing and circuit protection, proper grounding, conformal coating and electronic parts de-rating
- ✓ Dedicated fire detection PFE port are not required: ACOP becomes an extension of the EXPRESS Rack Fire Event Location, interfaced with the rack AAA and smoke sensor and utilizing the rack suppression path

Rapid Safing:

✓ ACOP does not impede emergency IVA: hardware within an EXPRESS Rack volume

Operations / Maintenance:

✓ Design provision meets the requirements of Letter MA2-00-038